Skip to content

bolv.model.backbone

class ConvBlock

Parameters

  • input_channels: int
  • output_channels: int
  • kernel_size: int, default=3
  • stride: int, default=1
  • padding: int, default=1
  • use_bias: bool, default=True
  • use_batch_norm: bool, default=True
  • use_max_pool: bool, default=True
  • max_padding: int, default=0
  • activation: callable, default=nn.Relu

Methods


class ResBlock

Parameters

  • input_channels: int
  • num_filters: int
  • max_pool: bool
  • max_padding: int
  • normalization: bool, default=True
  • use_bias: bool, default=False

Methods


class Conv

Parameters

  • input_shape: List[int]
  • ways: int
  • num_stages: int, default=4
  • num_filters: int, default=64
  • kernel_size: int, default=3
  • stride: int, default=1
  • padding: int, default=1
  • use_max_pool: bool, default=True
  • max_padding: int, default=0
  • use_batch_norm: bool, default=True
  • use_head: bool, default=True
  • activation: callable, default=nn.Relu

Variables

  • ~Conv.block{i}(nn.Module) - the block composing the backbone network, i=1,2...num_stages
  • ~Conv.head(nn.Linear, default=None) - one FC layer at the end of network
  • ~Conv.num_stages(int) - the num of conv blocks
  • ~Conv.output_shape(Tensor) - the shape of output tensor

Methods


class Res12

Parameters

  • input_shape: List[int]
  • ways: int
  • use_head: bool, default=True

Variables

  • ~Conv.block{i}(nn.Module) - the block composing the backbone network, i=1,2,3,4
  • ~Conv.head(nn.Linear, default=None) - one FC layer at the end of network
  • ~Conv.output_shape(Tensor) - the shape of output tensor

Methods